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INTRODUCTION 

 
 FIn 1940 G. Zappa(see (24)) and in 1950 J.Szip (see (23)) studied bout products of groups concerned finite 
groups. In 1961 O.H.Kegel (See (8)) and in 1958 H.Wielandt (see (10)) expressed the famous theorem, whose states 
the solubility of all finite products of two nilpotent groups . 
 In 1955 N.Itô (see (7)) found an impressive and very satisfying theorem for arbitrary factorized groups. He proved 
that every product of two abelian groups is metabelian. Besides that, there were only a few isolated papers dealing 
with infinite factorized groups. P.M. Cohn (1956) (see(21)) and L.Redei (1950)(see (22))  considered  products of 
cyclic groups, and around 1965 O.H.Kegel (See (30) & (31)) looked at linear and locally finite factorized groups. 
 In 1968 N.F. Sesekin (see (19)) proved that a product of two abelian subgroups with minimal condition satisfies 
also the minimal condition . He and Amberg independently obtained a similar result for the maximal condition around 
1972 (See (20)&(1)). Moreover, a little later the proved that a soluble product of two  nilpotent subgroups with maximal 
condition likewise satisfies the maximal condition, and its Fitting subgroups inherits the factorization. Subsequently 
in his Habilitationsschrift (1973) he started a more systematic investigation of the following general question. Given 

a (soluble) product G of two subgroups A and B satisfying a certain finiteness condition x , when does G have the 

same finiteness condition x ?(See (20)) 
 For almost all finiteness conditions this question has meanwhile been solved. Roughly speaking, the answer is 
'yes' for soluble (and even for soluble-by-finite) groups. This combines theorems of B. Amberg (see (1), (2),(3),(4) 
and (6)) , N.S. Chernikov (see (5)), S. Franciosi, F. de Giovanni (see (3),(6),(32),(33),(34),(35), and (36)), O.H.Kegel 
(see (8)), J.C.Lennox (see (12)) , D.J.S. Robinson(see (9) and (15)), J.E.  
Roseblade(see (13)), Y.P.Sysak(see (37),(38),(39)and(40)), J.S.Wilson  
(see (41)), and D.I.Zaitsev(see (11) and (18)). 
 Now, in this paper, we study the residual finite group and min-by-max subgroups of the group G and its relations, 

and the end we prove that if n21 A,....,A,A
, are finitely many pairwise permutable  abelian min-by-max subgroups 

of the group G such that G is the products of n1 A,....,A
. Then G is soluble min-by-max-group and J(G) is products 

of 
)J(A),....,J(A n1 , i.e.  

)....J(A)J(A J(G) n1
For do this, in chapter 2 we express the elementary lemmas 

and theorems and in chapter three we prove the main theorem. In this chapter we express the elementary Lemma 
and Diffinitons whose used the prove the mantheorem in chapter 3. 
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2. Priliminaries : ( elementary properties and theorems.) 
 In this section we study the elementary Lemma and theorems, whose using in section 3 and prove of main 
theorem. 
 
2.1. Lemma: 

 (See 25) Let the groups 

,xHG
t

Ii

ii




where t1 H,...,H
 are subgroups of G. Then at least one of the subgroup 

iH
 has finite index in G.  

 
Proof :   

 Let s be the number of distinct subgroups among t1 H,...,H
. If s=1, the lemma is clear. Suppose that s>1, and 

let I be the set of indices i such that 
.HH 1i   If 

,xHG
Ii

i1




 then iH
 has finite index in G. Assume now that 

there is an element y in 

.

Ii

ix1H\G 
  Thus the intersection 

)xH(yH
Ii

i11 
 is empty, and hence 

.xHyH
Ij

jj1 




Therefore for each i in I we obtain 

.xyxHxH i
1-

Ij

jji1 




 This proves that G is the union of finitely  many cosets of 

the subgroups jH
, where j is not in I. As the number of  distinct subgroups among these is s-1, by induction on s 

at least one of them has finite index in G.  
 
2.2. Lemma:  
 Let the group G=AB be the product of two subgroups A and B. If A0 and B0 are subgroups of finite index of A 
and B, respectively, then the subgroup H=<A0, B0> has index at most mn in G, where |A:A0|=m and |B:B0|=n.  
 
Proof :   
 Let {a1,…,am} be a left transversal of A0 in A and {b1,…,bn} a right transversal of B0 in B. Then.  

G=AB=
ii

-1
ii

ji,
i00i

ji,

b)aHa(abBAa  
 

is the union of finitely many right cosets of conjugates of H. It  follows from Lemma 2.1 that H has finite H has finite 
index in G. To obtain the required bound for |G:H|, it is clearly enough to consider the finite factor group G/HG, where 
HG is the core of H in G. Consequently we may suppose that G is finite. Then.  
 

mn,|H| mn
|B  A |

|B| . |A|

|B  A |

|B| . |A|

|B  A |

|B| . |A|
|G|

00

00

00


  And so |G:H| mn.   

 
2.3. Lemma: 
 (See (1)) Let the group G=AB be the product of two subgroups A and B.  
(i) If A and B satisfy the maximal condition on subgroups, then G satisfies the maximal  condition on normal 
subgroups.  
 (ii) If A and B satisfy the minimal condition on subgroups, then G satisfies the minimal condition on normal 
subgroups.  
 
Proof:  



J Nov. Appl Sci., 3 (11): 1303-1307, 2014 

 

1305 
 

 (i) Let Nnn )(H  be an ascending sequence of normal subgroups of G. Then Nnn )H(A 
 and 

Nnn )H(B 
 are ascending sequences of subgroups of A and B, respectively. Hence  

1nn1nn AH B AHB    and    H A HA   
 

For almost all n. It  follows that  

1n1nnnn AH)AH B A()AHA(BAH AB AH   
 

And so  

1n1n1n1nn1nnn HH AHHAH)H (AH H   
 

For almost all n. Therefore G satisfies the maximal condition on normal subgroups.  
The proof of (ii) is similar.  
 
2.4.Lemma:  
 Let the group G=AB be the product of two subgroups A and B. If x, y are elements of G, then G=AxBy. Moreover, 
there exists an element z of G such that Ax=Az and By=Bz.  
 
Proof :   

 Write xy-1=ab with a in A and b in B. If z=a-1x, then x=az and 
z,by -1

 so that Ax=Az and By=Bz. It follows that 
G= Az Bz= Ax By. 
 
2.5. Difinition :  

 Recall that a finite group is a 
 groups-D if evety 

subgroup-
 is contained in a Hall 

 subgroup-
and 

any two Hall 
subgroups-

 are conjugate.  
 
2.6. Lemma:  

 Let the finite group G=AB be the product of two subgroups A and B. If A,B, and G are 
group,-D  for a set 

  of primes, then there exist Hall  -subgroups A0 of A and B0 of B such that A0B0 is a Hall                          -
subgroups of G.  
 
Proof:   

 Let A1, B1, and G1 be Hall  -subgroups of A, B, and G, respectively. Since G is a 
group,-D there exist 

elements x and y such that 

y
1

x
1 B and A

 are both contained in G1. It follows from Lemma 2.4 that 

zx A A 
  and  

zy B B 
for some z in G. Thus 

-1xz
10 A A 

and 

-1yz
10 B B 

 are Hall  -subgroups of A and B, respectively, 

which are both contained in 

-1z
1

G 
0

G 
. Clearly the order of 00 BA 

 is bounded by the maximum               -

divisor n of the order of BA  since 

,
|B  A|

|B| . |A|
|G|




It follows that 

.|BA|
|B  A|

|B| . |A|

n

|B| . |A|
|G| 00

00

0000
0 

  

Therefore A0B0=G0 is a Hall   -subgroup of G. 
 
2.7. Corollary:  
 Let the finite group G=AB be the product of two subgroups A and B .Then for each prime p there exist Sylow p-
subgroups A0 of A and B0 of B such that A0B0 is a Sylow p-subgroup of G.  
Proof:  
See (5) 
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2. 8. Corollary :  
 Let the finite group G=AB=AK=BK be the product of three nilpotent subgroups, A,B, and K, where K is normal in 
G. Then G is nilpotent .  
 
Proof:  
See( (4), corollary 1.3.5) 
 
2.9. Theorem :  
 (See (7)) Let the group G=AB be the product of two abelian subgroups A and B. Then G is metabelian.  
 
Proof :  
 Let a,a1 be elements of A and b, b1 elements of B. Write 

B. in b,b and A in a  ,a   whit,aba  and  bab 323233
b

22
a 11 

 Then  

]b,[a]b,[a]b  ,[a]b a, [b] a, [ 232
bb

2
baab 111111 

 
and  

].b,[a]b,[ab]  ,[ab] ,a [b] a, [ 23
a

3
a

3
abab 111111 

 
This proves that the commutators (a,b) and ( a1,b1)  commute. Since the factor group G/(A,B) is abelian, it follows 

that b],[a,G   and hence G  is abelian.  
 
2.10 .Lemma:  
 Let the group G=AB be the product of two abelian subgroups A and B, and let S be a factorized subgroup of G. 
Then the centralizer CG(S) is factorized . Moreover, every term of the upper central series of G is factorized.  
 
Proof:  

 Since S is factorized, we have that S=
S).S)(B(A 

 Let x=ab be an element of S, where a is in SA

and b is in SB .If c=a1b1 is an element of CG(S), with a1 in A and b1 in B, it follows that.  

          1.bc,b,cbb,aab,ax,a
-1
1b1-

1111 
 

Therefore a1 belongs to CG(S), and  CG(S) is factorized by Lemma 1.1.1 of (4). In particular, the center of G is 
factorized. It follows from Lemma 1.1.2 of (4)  that also every term of the upper central series of G is factorized.  
 
2.11.  Lemma:  
 Let the group G=AB be the product of two subgroups A and B. If A1, B1, and F are the FC-centers of A, B, and 

C, respectively, then F=A1F
 B1F. In particular, if A and B are FC-groups, the FC-centre of G is factorized subgroup.  

 
Proof :   

 Let x be an element of A1F  B1F, and write x=au where a is in A1 and u is in F. Since the centralizers CA(a) and 
CA(u) have finite index in A, the index |A: CA(x)| is also finite. Similarly, CB(x) has finite index in B. Therefore 
|G:<CA(x),CB(x)>| is finite by Lemma 1.2.5 of (4). It follows that CG(x) has finite index in G and hence x belongs to F. 

Thus F=A1F
 B1F.  

 
2.12. Lemma:  
 (See (7)) Let the finite non-trivial group G=AB be the product of two abelian subgroups A and B. Then there 
exists a non-trivial normal subgroup of G contained in A or B. 
Proof :  
 Assume that {1} is the only normal subgroup of G contained in A or B. By Lemma 2.11 have Z(G)=(A

1.Z(G))Z(G))(B 
The centralizer 

,GA contains ))G(C (AC=C GG 
 and so is normal in G. 



J Nov. Appl Sci., 3 (11): 1303-1307, 2014 

 

1307 
 

Since 
1,Z(G) (AZ(C))B 

 it follows that 
A.AZ(C))A(BAZ(C)  

This Z(G) is a normal 

subgroup of G contained in A, and so Z(G)=1. Since G  is abelian by Theorem 2.9, we have

1.Z(C))G(CAGA G  
 

Similarly 
1.Z(C))G(CBGB G  

The factorizer 
)GX(X 
has the triple factorization 

  ,G*BG*AB**AX  Where  GBAA*   and .GABB*    Thus X is nilpotent by 
Corollary 2.8, so that 

Z(X))Z(X))(B(AZ(X) 
 

is not trivial. Hence there exists a non-trivial normal subgroup N of X contained in A or B. Suppose that N is contained 

in A. Since Gnormalizes N, we have   1.GAGNGN,    Therefore we obtain the contradiction 

1.)G(GAN G  
 

 
3. Main Theorem:  
 in this section by using of sections 1 and 2, we prove the following main theorem. 
 
3.1. Theorem:  
 Let the finite group G=A1…At be the product of pairwise permutable nilpotent subgroups A1,…,At. Then G is 
soluble.  
 
Proof: 
 Let p be a prime, and for every i=1…,t let P1 be the unique Sylow   

p-complement of Ai. If 
ji 

, the subgroup AiAj is soluble by Theorem 2.4.3 of (4). Hence it follows from Lemma 
2.6,that PiPj is a Sylow p-complement of AiAj. Thuse the subgroups P1,…,Pt pairwise permute, and the product 
P1P2…Pt is a Sylow p-complement of G. Since G has a Sylow p-complement for every prime p, it is soluble. 
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